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ABSTRACT

A novel gold(l)-catalyzed cycloisomerization of propargylic esters leading to unsymmetrically substituted naphthalenes has been developed.
This cascade reaction involves an unprecedented tandem sequence of 1,3- and 1,2-migration of two different migrating groups. It is believed
that this transformation likely proceeds via the formation of 1,3-diene intermediate or its precursor, which upon cyclization and aromatization

steps transforms into the naphthalene core.

In recent years, transition-metal-catalyzed transformations catalyzed double 1,3-/1,2-migration-benzannulation cascade

of propargylic estefshave received much attention. Par-
ticularly intriguing is reactivity of these easily accessible
compounds in the context of gold catalysishich has been
reflected in the development of a variety of diverse and
elegant transformations leading to an immense array of
complex organic molecules. Remarkable propensity of pro-
pargylic estersl to undergo 1,3-acyl migratiot? through

the formation of an activated allene equivalent, intermediate
i,! allowed for efficient and expeditious assembly of various
acyclic unsaturated synthcoh&nd complex carbé-and
heterocycles (eq 1). Herein, we wish to report a gold(l)-
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of propargylic esterd into naphthalene® (eq 2).
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of a suitable 1,2-migrating group (MG) inwould provoke It deserves mentioning that the isomerization of acetates

a subsequent 1,2-sHifinto iii, which upon proton loss and 1 into 1,3-dienes5 in the presence of Ag-catalysts was

protiodeauration would afford 1,3-dieh@. It is reasonable  reported (eq 4} However, the nature of the second step

to propose that the latter may undergo-@ectrocyclization (1,2-H-shift or proton elimination) remained unclear. To

into naphthalerfe’ 2, analogously to the known cyclization ~address this issue, we performed mechanistic sttidies

of acyloxy-1,3,5-triené$ (eq 3). MG = H (eq 3) employing Au(l) catalyst. Experiments
revealed that the reaction proceeds exclusively via a 1,3-

s (oo OO oxo shift!3~15 —eliminatiort® sequence.
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To this end, a possible isomerization of propargyl phos-
phatela (MG = H) in the presence of different catalysts

has been tested (Table 1). It was found that employment of Thus, we hypothesized that successful incorporation of a

1,2-migration into this cascade can only be achieved when
a migrating group resides at a “proton-free” quaternary C-4

_ center. Therefore, isomerization of acetatk possessing a

Table 1. Optimization of Reaction Conditions strained cyclobutane ring, was examined. Indeed, a tandem
PONOE, I opoyoer, 1,3 mlgratlon a_nd ring expansion via a 1,2-shift occurred
= . or leading to 1,3-dien8d in a moderate yield (eq 5). Moreover,
0.05Mi . . .
e\ oM. B S _OPONOEY, 4a isomerization of cyclopentyl homologke and 1f afforded
target naphthalene®e and 3f respectively (eq 5), thus pro-
entry catalyst yield 4a, %  yield 3a, % viding a proof of concept for this cascade transformation.
1 10% AgOTf 73 0
2 5% PhsPAuCl, 5% AgOTf 0 0 AcQ 10% PhaPAUOTS - Q '
3 5% AuCls 0 0 S ER o Q ()
4 5% AuCl, 15% AgOTf 0 86 " Ph 1 DEE PR 5 ™\ e = 2
5 5% Aul 0 86 —Teclatedyied, % R
6 5% R3PAuCl (R = Et, Ph) 0 86 n R 3 2
d: 1 H 54 -
a|solated yield of product for reaction performed on-6a2 mmol e 2 H - 36
scale. f 2 pHex - 30
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Scheme 1. Mechanistic Rationale for Au(l)-Catalyzed Cascade

to provide naphthalenegg—n in good to excellent yields.  an additional support for possible intermediacy of 1,3-dienes
Terminal, alkyl-, and aryl-substituted acetylenes were nearly in this transformation (eq 6).
equally efficient in this transformation. Unexpectedly, cy-

clization of dimethylphenyl-substituted acetateproceeded
via exclusive 1,2-Me-group migration to givgk in good 2.5% PhoPAUOTE Q_\ 5% PhaPAUOTS a
yield (entry 5). Notably, a variety of substituents, such as # O D‘;Eo/“ DC'Z;SC’C

methoxy (entry 6), trifluoromethyl (entry 7), and 2-furyl
(entry 8), were perfectly tolerated under these reaction
conditions.

We propose the following plausible mechanisms for this
novel cascade transformation (Scheme 1). Au-catalyzed 1,3-
migration transformd via cyclic intermediat®3¢50iy into
allene4.® According to pathA, 1,2-alkyl migratior® in iv
produces benzylic cation. The latter gives dien8 upon ~ Table 2. Gold(l)-Catalyzed Synthesis of Naphthalenes

In summary, we have developed a novel gold(l)-catalyzed
approach toward polysubstituted naphthalenes, which features
an unprecedented tandem sequence of 1,3- and 1,2-migration

protiodeauration or after proton transfer undergoes Friedel oxo H R! -
Crafts alkylation to furnish naphthalerze Alternatively, a RzﬁRs 10% PhyPAUOTS
direct nucleophilic attack of vinyl-Au at the delocalized R Ph 1 0.05Min DCE, 1t 2 e
P - o )
benzyl cation i/ gives carbgnqd intermediate, which ety Sibstate Droduct Vield, %7
upon 1,2-H-shift® and aromatization produces naphthalene OP(GYOEY, Pn
2 (Path B).?* According to pathC, Au-catalyzed 6m- 1 Ph Ph 2g 86°
- ucatlyzed o e
electrocyclizatioffc22of 3 followed by elimination furnishes Ph A
2. In another scenario, direct intramolecular hydroarylation o QAe
of 4 followed by 1,2-shift and proton loss wii produces? 2 phﬁ)\ OO 2h %
. . . . Ph Bu-n 5
(PathD). Unexpected exclusive Me- over Ph-migration in on A
. . . . O)OEt)
1k is reasonably rationalized by stereoelectronic effect, 3 Ph>‘)< > O 2h 50
according to which Ph group cannot accommodate requisite Pl N, <) g
. . . . . . . u-17
antiperiplanar orientation with the leaving groupan'22324 one PR Ph
Successful cycloisomerization die, obtained via 1,3- 4 ;’:N O 2 75
migration/elimination cascade, into naphthal@eg@rovided Ph Ph O o
OAc Me
M Me
(18) For selected examples, see: (a) Dudnik, A. S.; Gevorgyan, V. 5 MZ X 2k &
Angew. Chem., Int. E®007,46, 5195. (b) Kirsch, S. F.; Binder, J. T.; Ph P
Liébert, C.; Menz, HAngew. Chem., Int. EQ®006,45, 5878 ACO on
(19) See, for example: (a) Luzung, M. R.; Mauleon, P.; Toste, R.D. 6 = OO 2 90
Am. Chem. So007,129, 12402. (b) See also ref 4a,b. o oMe
(20) For selected examples, see: (a) Markham, J. P.; Staben, S. T.; Toste, PR CoHa-p-OMe
F. D.J. Am. Chem. So@005,127, 9708. (b) Gorin, D. J.; Davis, N. R; Ph
Toste, F. D.J. Am. Chem. SoQ005 127, 11260. (c) Sromek, A. W.; AcQ Ph
Rubina, M.; Gevorgyan, VJ. Am. Chem. So005,127, 10500. 7 phm OO 2m 84
(21) PathB involving clean 1,2-H-shift to Au-carbenoid is not supported PH b CFs
by the observed significant loss of D-label in cycloisomerization CeHap-CF3
of lj—d. Ph Ph

AcO
ACO_ D 56+% 10% PhPAUOTE Ph  Ph 0
—_— 33% 8 Ph ==_ O O 2n 94
PhsC™ 0.05 M in DCE O D Pi by 8 )0
S R
. i 2
1j-d 78% Ph 2j-d

(22) See also: Menz, H.; Kirsch, S. Brg. Lett.2006,8, 4795. a|solated yield.? Reactions were performed on a 0.5 mmol sca%
(23) For similar considerations, see: Aggarwal, V. K.; Sheldon, C. G.; Au-catalyst was used.
Macdonald, G. J.; Martin, W. Rl. Am. Chem. So002,124, 10300.

Org. Lett, Vol. 10, No. 7, 2008 1467
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